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I N S T A B I L I T Y  O F  A S E L F - G R A V I T A T I N G  C O M P R E S S I B L E  

M E D I U M  

Yu. G. Gubarev UDC 532.2 

Widely known in analytical mechanics are the theorems of Lyapunov and Chetaev (inversions of the Lagrange theorem) 

[1, 2], consisting in proof of the instability of the equilibrium position of a mechanical system with the absence in the system 

of a minimum of the potential energy. A way to generalize these theorems to systems containing rigid bodies and a fluid was 

proposed by Rumyantsev [3, 4]. This approach was further developed in [5-10], where the instability of several fluid equilibria 
was proved with the aid of the Lyapunov virial functional [3, 11]. 

In the present work we consider an example of inversion of the Lagrange theorem in the hydrodynamics of a self- 
gravitating fluid. We study the problem of the stability of the states of equilibrium (rest) of an infinite self-gravitating 

compressible medium [12-14]. It is proved by the Lyapunov direct method that the system is unstable if there exist small 
disturbances of the density that reduce the potential energy. Two-sided estimates of the growth of the disturbances are obtained 

in the linear approximation. The lower estimate guarantees exponential increase of the energy of the gravitational field. The 

upper estimate shows that the disturbances grow no faster than exponentially. In both cases the exponents are calculated on 

the basis of the parameters of the states of equilibrium and the initial values for the disturbance fields. On the basis of the 

relations of the exact problem there is obtained a lower estimate, indicating the rms growth of the disturbances of the density 

and/or the velocity potential. 
We note that from the mathematical viewpoint these estimates have an apriori  nature, since the corresponding solution 

existence theorems have not been proved. 
1. Introduction. The idea that the observable structuring of matter in the Universe is due to gravitational interaction 

was expressed by Newton [15]. However, this hypothesis was first given a modern mathematical formulation only by Jeans 
[12, 13], who examined the linear problem of the stability of the states of rest of an inffmite self-gravitating compressible 

medium with undisturbed density Pa. = const. He showed that small disturbances of the density 

p '  = bexp[l(ltx - o~ 0 1, b = const, 

will grow with time if the wavenumbers k satisfy the condition 

I k] </c. ,  k. -= 4:'rGp,.c -2. (1.1) 

Here x = (x 1, x 2, x3) are the Cartesian coordinates; o~ is the wave frequency; t is the time; c is the speed of sound; G is the 

gravitational constant. 
In later years studies were conducted basically in two directions: 1) analysis of the influence of various factors (rotation, 

magnetic field, turbulence) on the Jeans criterion (1.1) [16-19]; 2) obtaining the conditions of stability of the states of rest of 

an infinite self-gravitating compressible medium relative to one-dimensional disturbances of finite amplitude [20-24]. A 

characteristic feature of the studies [16-24] is that in them the conclusions relating to instability are drawn simply on the basis 

of the presence of disturbances that decrease the energy of the states of rest; the authors thereby accept the validity of the 

inverse Lagrange theorem without any foundation for this. 
The primary objective of the present work is to prove the instability of the states of equilibrium (rest) of an infinite 

self-gravitating compressible medium if the Lagrange theorem inversion condition is satisfied. This condition means the absence 
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in these states of equilibrium of a minimum of the potential energy. 

2, Problem Statement. The three-dimensional adiabatic motions of a self-gravitating ideal compressible fluid are 

studied. We use the notations: p, p, and v = (Vl, v2, v3) are the pressure, density, and velocity fields, ~ = ~(x, t) is the 

gravitational field potential, -y is the adiabatic exponent. It is assumed that the fluid f'tlls the entire space, and at infinity (i.e., 

for [ x I -" ao) it has constant density and is at rest [14]. The motions of the fluid are described by the solutions of the system 

of equations [14, 21] 

pDv -- - Vp - pV(I), Dp + pd iw -- 0, A<I) = 4:~GCo - p.,). 

D =- a / O t +  v V ,  

(2.1) 

supplemented by the thermodynamic relation 

p = ap y, a = const, ~, = C / C v "  1, (2.2) 

and by the conditions at infinity 

Ivl - o, t v * t  -~ 0 , p  - - p . ,  p - -  p .  for txl-~ ~,  (2.3) 

where Cp and c v are the specific heats: p~., p~ are constant quantities. The initial values for (2.1)-(2.3) are specified in the 

form 

p(x,  0) = po(X), ,,(x, 0) = Vo(X) (2.4) 

with obvious limitations on the functions P0(x) and v0(x). All the utilized functions and their derivatives, entering into the 

equations of motion, the thermodynamic relation, and the conditions at infinity, are considered to be continuous. 

For the solutions of the problem (2.1)-(2.4) there exists the energy integral (here the hereafter integration is performed 

over the entire space) 

dEa/dt  = 0 ,  E 1 = K t + r l  1 = con.s t ,  2 K  1 = f p o ~ d x ,  dx - dxldxadx 3, 

I1 t = f ( p ( y  - 1) -1 + (p - p |  
(25)  

The states of hydrostatic equilibrium are solutions of the problem (2.1)-(2.4) of the form 

v = vo(x  ) - o ,  p = Po (X)  = p . ,  p = p o ( x )  = p . ,  �9 = % ( x )  = ~ , . ,  (2.6) 

where ~c. is a constant quantity. 
3. Ext remum condition. Let 5v i, ~p, 6p, and ~ be the variations of the fields vi, p,  p,: and ~, respectively. With the 

aid of Eq. (2.1) and the relation (2.2) we find the connections of ~p with ~ and 5p: 

Ac}~ = 4nG~p, 6p =,yp.p-Z6p.  (3.1) 

For the first variation 5Ei, calculated from the solution (2.6) with account for (3.1), the following representation is valid 

~ e t  = J ' l ( y P . / ( r  - l ) p .  + a, 12)apl  ax. (3.2) 

Using the arbitrariness of the quantity ~, ~., we can select it so as to satisfy the relation 

r  = - 2 ~ , p .  ( ( y  - 1 ) p . ) - ' .  (3.3) 

After this we obtain ~E i = 0. It is clear that the equality (3.3) agrees with (2.6) and with (2.1). 
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Thus, if we take as @~ in (3.2) the quantity satisfying the condition (3.3), then the states of rest (2.6) are stationary 

points of the functional E i (2.5) in the class of the independent variations 6vi, (50, subject only to the conditions of continuity 
together with their first derivatives. 

4. Second Variation. The expression for the second variation of the energy E i (2.5) has the form 

6~e t = f {Co /2)~o,~o, + (;,/2)p.,o-~(~p) ' + (6p/2)6ml  ax. (4.1) 

A remarkable property of 62Ei (4.1) is its conservation by virtue of the linearization on the exact stationary solution 

(2.6) of the problem (2.1)-(2.4). This property follows from the fact that E t (2.5) is the energy integral for the exact problem 

(2.1)-(2.4), and the Ftrst variation 5E 1 (3.2) vanishes on (2.6). 
5. Linearized Problem. Actually, linearization of the relations (2.1)-(2.3) on the solution (2.6) yields 

p a~/at = - ap'/ax~ - p a ~ ' / o x + ,  ap'/ot = - p a ~ / a x ~ ,  

o~,~'/a~ = ~ c ~ ' ,  p' = ~,p .p ' /p . ,  Ixl -- ~: p ' , p ' ,  lv~, ' l ,  I~'1 -" 0. 
(5.1) 

Here v ' ,  p', p ' ,  @ are the fields of the disturbances of the velocity, density, pressure, and the gravitational field potential. The 

initial values (2.4) in the linear approximation reduce to the form 

t, '(x, 0) = p~(x), v'(x, 0) = V'o(X). (5.2) 

In the following the primes on the ~tisturbance fields, distinguishing them from the complete solutions of  the system of Eq. 

(2.1), are dropped. 
Direct calculations show that for the solutions of the problem (5.1), (5.2) the analog of the energy integral is valid 

dE/dt = 0, E = K + FI = con.st, 

z x  = f p . ~ a x ,  2n  = f p  ( ~  + ~p.p--~t,) ax. 
(5.3) 

Comparison of the functional E (5.3) with the second variation (52EI (4.1) actually discloses their coincidence if the variations 
~v i, ~p, 5p, and ~,1} are interpreted as infinitesimal Eulerian disturbances of the corresponding hydrodynamic fields. 

The further examination is limited to that class of motions for which the disturbances involve only displacements of 

the fluid particles from the equilibrium position [6]. This class of  motions is most simply described with the aid of the 

Lagrangian displacement field ~ = ~(x, t) [11]: 

o~,/ot = ~. (5.4) 

In this case the relations (5.5) are rewritten as follows: 

p . a 2 ~ , / a ?  = - a t , / a x ,  - p a,t,/ax,, p = - p.a~/ax,. 

p = - } ,pa~/ax , ,  a ~ l a ~  = - 4nc, p ar Ixl -, | I~I -" o. 
(5.5) 

The initial values (5.2) for (5.4), (5.5) take the form 

(x, 0) = ~ , (x ) ,  v(x,  0) = or O)/ot = vo(x ). (5.6) 

It is important to emphasize that in this and the subsequent sections it is assumed that the utilized integrals of the fields 

of  the disturbances of  the velocity, density, and the gravitational field potential, and also the integrals of  the Lagrangian 

displacement fields, exist and are t'mite. This assumption is based on the hypothesis relating to the continuity of the permissible 

disturbances and on the suitable conditions of their decay at infinity. 
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In the following we shall prove the instability of the states of equilibrium (2.6) in the linear approximation with the 

absence in them of a minimum of the potential energy II (5.3), we shall derive the estimates of the growth of the disturbances 
and formulate an example illustrating the obtained results. 

6. Inversion of the Lagrange Theorem and the Lyapunov Functional. In terms of the Lagrangian displacements 
the condition of inversion of the Lagrange theorem (i.e., the absence of a minimum of the potential energy II  (5.3) on the 

solution (2.6)) means that there exists that set Q of the initial fields ~0(x) (5.6) for which 

H - -  r l .  < 0 for ~0(x) E Q. (6.1) 

If however, ~0(x) ~ Q, then the inequality (6.1) can be replaced by the opposite inequality, i.e., the states of rest (2.6) are the 

infinite-dimensional analogs of the "saddle" point of the functional II. The meaning of the requirement (6.1) can be clarified 
by writing the functional II (5.3) with the aid of the conditions at infinity for the problem (5.1), (5.2) in the form of a sum 

17 = A 1 + A2, A 1 - - ( 8 ~ G )  -~ f ( O r  2 dx, 

A 2 - f ( ( y / 2 ) p , , , o 2 p  2) dx.  

We see that the condition (6.1) is satisfied if and only if among the initial Lagrangian displacement fields ~0(x) there are those 

for which the inequality A 2 < ] A 1 [ will be valid. 
For the demonstration of the instability there are introduced the functionals [6-10] 

M -~ fp**~,$,ax, M ' / 2  = W -~ fp**~fl idx.  (6.2) 

Differentiation of the doubled functional W with respect to time and subsequent transformations with the use of  (5.1), (5.3), 

(5.5), (6.2) yield the relation 

M" = 2W" = 4(K - I1) = 8 K -  4E, (6.3) 

which is termed the virial equality [11]. The relation (6.3) is multiplied by the undetermined constant multiplier k and is 

combined with (5.3). After simple transformations, the obtained relation reduces to the form [8, 9] 

2Ka = 2 K  - AM" + 2ZM = f p|  - 21j)Xdx. 
(6.4) 

The limitation X > 0 is imposed. After this there follows from (6.4) by virtue of the non-negativity of the functional K 7 the 

inequality E x _< 2XE x, integration of which makes it possible to obtain the relation 

E~(t) ~< Ex(0)exp(2,1.t). (6.5) 

It is important to emphasize that the inequality (6.5) is valid for any solutions of the problem (5.4)-(5.6) and for any positive 

value of the parameter X. Moreover, in the derivation of (6.5) no limitations on the sign of the functional I I  are required. 

The inequality (6.5) shows that the quantity E x varies monotonically with time. This makes it possible to use it in the 

following as the Lyapunov functional [1-3]. 
7. Lower  Est imate of  the Growth of the Disturbances. Let the condition (6.1) be valid. This means that we can take 

as the initial Lagrangian displacement fields those functions G0(x) (5.6) for which the inequality II(0) < 0 holds; as the initial 
velocity fields we examine the functions v0(x) (5.6) such that the relation K(0) < [II(0) I is satisfied. Then the following 

inequality is valid 

e (0 )  < o. 
(7.1) 
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In accordance with the definition (6.4), the functional EX(0 ) is a polynomial of second degree of X with a positive 
coefficient M(0) (6.2) with X 2 and a negative free term E(0) (7.1): 

Ea(0  ) = E ( 0 )  - ( 2 / 2 ) M ' ( 0 )  + ,1.2M(0). (7.2) 

Setting h > 0, with the aid of (7.2) we can show that on the interval 

.IM'(0.______)) 
0 < 2  < ,k l= B + C ~ , B  - 4M(0),  C = B a - 

the relation is satisfied 

E(O) (7.3) 
M(0) 

Ea(0 ) < 0. (7.4) 

It follows 
exponentially. 

If X = X 1 - 8 (with any 8 from the interval 0 < 8 < A1), then the relation (6.5) takes the form 

E^C,( 0 ~ E^c~(0)ex p [2 (A~-  6)t] (E^, _~(0) < 0). 

By virtue of the definition of the functionals K x and H x (6.4), the inequality holds 

eAO = KAt) + nA0 > - (s~6")-~ f (o,t,/o~,):ax, 

from the inequalities (6.5), (7.4) that in the course of time the solutions of the problem (5.4)-(5.6) grow 

(7.5) 

which together with (7.5) yields the estimate 

f (or > 8.~GIEAI_d0 ) [exp 12(m 1 - di)t 1. (7.6) 

It follows from (7.6) that the parameter A t (7.3) is the lower estimate of the increments of the solutions of the problem (5.4)- 

(5.6). 
The estimate (7.6) can be improved if we examine that class of the solutions of the problem (5.4)-(5.6) for which the 

initial velocity field Vo(X) and Lagrangian displacement field ~J0(x) are connected at each point by the relations 

vo(x ) = 2/io(x ). (7.7) 

In fact, in this case there follows from (6.4), (7.7) 

KA0) = 0, eA0 ) --- rlAo ). (7.8) 

If X > 0 and the condition (6.1) is satisfied for the Lagrangian displacement fields Go(X) (5.6), then, since by virtue of the third 
relation (6.4) 

on the interval 

2ri~(o) = 2n(o)  + ~.'M(o), 

21i(0) 1 t/2 
0 < , l  < A =  - ' ~ )  

(7.9) 

there holds the inequality IIx(0) < 0. Setting X = A - 81 (with arbitrary 81 from the interval 0 < 81 < A) and considering 
(7.8), we can write the inequality (6.5) in the form 
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E^.+l(t)  < H^_+ (0)expI2(A - 6~)tl, 

from which there follows the estimate 

f (~t,/Oxfdx > 8~GIH^_+ (0)[exp [2CA - 61)ti. (7.10) 

Thus, the parameter A (7.9) is the lower estimate of the increments of the solutions of the problem (5.4)-(5.6) from 

the class (7.7). 
Comparison of the estimates (7.6), (7.10) indicates that the solutions of the problem (5.4)-(5.6) from the class (7.7) 

grow faster than the solutions from the class (7.1). 
It is shown below that the disturbances (7.7) are most dangerous, since the fastest growth of the solutions of the 

problem (5.4)-(5.6) is observed for 

A + = sup~d. ~ ~ QA. (7.11) 

8. Upper  Est imate of the Growth of the Disturbances.  Let there hold the inequality X > A + (7.11). Then for the 

initial Lagrangian displacement fields Go(X) (5.6), (6.1) the relation holds 

H~(O) > O. (8.1) 

The inequality (8.1) is even more satisfied for those Lagrangian displacement fields Go(X) which do not satisfy the condition 
(6.1). Thus, the functional H x is positive definite for all possible initial Lagrangian displacement fields /Jo(X) (5.6). The 
relations (5.1), (5.4), (6.4) show that the functional E x is also positive definite for all possible initial Lagrangian displacement 

fields Go(X) and velocity fields v0(x) (5.6). 
Consequently, for X = A + + e 1 (e 1 > 0) there follows from the basic inequality (6.5) the estimate 

E^++,t( 0 ~< E^++,t(0)ex p I2(A § + e,)tl .  (8.2) 

It follows from (8.2) that the parameter A + + E t is the upper estimate of the increments of the solutions of the problem (5.4)- 

(5.6). 
Comparison of the inequalities (7.10) and (8.2) which account for the definition (7.1) makes it possible to conclude 

that the parameter A + provides both the lower and the upper estimates of the rate of growth of the solutions of  the problem 

(5.4)-(5.6) from the class (7.7): 

A + - 3 1  ~< w .  ~< A + + e t. (8.3) 

The estimate (8.3) means that those solutions of the problem (5.4)-(5.6) for which the increment is equal to A + (7.11) grow 

most rapidly. Consequently, after calculating the value of A + from the formulas (7.9), (7.11) we can answer the question: after 

what characteristic time will the system "depart" from the given position of equilibrium (2.6)? 

9. Example.  Let the field ~j(x) (5.6) have the form 

~o = (~m, ~-,, ~ )  = (Ll(xl) '  o, 0), 

3alxl; 0 <~ x 1 ~ 2 ~ / a l ,  

~ot = [0; x~ ~< O, x~ >-- 2n /%,  
(9.1) 

where a i and oq are constant quantities and a l  > 0. Then with the aid of the relations (5.5), (9.1) it is not difficult to show 

that the fields of  the disturbances of the density p and of the gravitational field intensity v ~i, can be written as follows: 
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IO; (3 /2)c t la!p* 's in2alx ls ina lx~ ; O ~ xl ~ 2 ~ / a l '  
P = x~ <~ O, x I >~ 2 ~ / a l ,  

V r  = (a~/axl, a,t,/ax~, ar = (ar O, 0), 
(9.2) 

0, 4~Gp a l s in3a ,x1:0  <~ x I <~ 2ar, l a , ,  
O(~/Ox I = | 

x I ~ O , x  1 >~ 2 n / a  v 

Direct verification makes it possible to ascertain that the relations (9.1), (9.2) satisfy the conditions at infinity (5. I), (5.5). With 
account for (9.1), (9.2), the functional H (5.3) has the form 

II  = (9n/16a, )rp . .a~(a~ - (20,=/9)Gp| c 2 - r P | 1 7 4  (9.3) 

It follows from (99.3) that the functional II  will take negative values if 

a12 < (20~/9)Gp | -~. (9.4) 

Thus, the Lagrange theorem inversion condition (6.1) is satisfied for the field ~0(x) (9.1), (9.4). This means that the 
states of rest (2.6) are unstable. With the aid of (9.1), (9.4) the estimates of the rate of growth of the disturbances (7.6), (7.10), 

(8.2) are written out in explicit form, and the increment A + (7.9), (7.11) of the fastest growing disturbances is calculated. We 
note that the condition (9.4) agrees with the result obtained earlier [12, 13]. 

In the following we shall prove the instability of the states of equilibrium (2.6) by virtue of the relations of the exact 

problem (2.1)-(2.4) with the condition of validity of the inverse theorem, i.e., with the absence in these states of equilibrium 

of a minimum of the potentials energy II 1 (2.5). It is shown that rms growth of the disturbances of the density and/or the 

velocity potential takes place. 
10. Basic Relations. Further studies are limited to examining the class of three-dimensional adiabatic potential motions 

of a self-gravitating ideal compressible fluid v = v ~ (~ = ~(x, t) is the velocity potential). In this case the exact problem 

(2.1)-(2.4) can be rewritten as: 

~ / o t  + ( v ~ , ) ~ / 2  = - ~ - r n ( ( r  - l ) n )  -~ - ~, 
ap/Ot + divCoV~o) = 0, A ~  = 4•aCo - p| 

p = ap r, a = coast, y = c / c  v > I ,  (10.1) 

Iv~ l  - ,  o, I w ,  I --  o , p  - - p . ,  p - -  p .  for Ixl -- | 

~, (x ,  o )  = ~,o(X), p ( x ,  o )  = po(X) .  

Here/3 = /3 (0  is an arbitrary function of its argument. 
The states of hydrostatic equilibrium are solutions of the problem (10.1) of the form (ta~ is a constant quantity) 

~, = ~Oo(X ) = ~ , ,  p = po(X) = p|  

p = po(x)  = p . ,  (I, = ,l~o(x ) = ( I , .  
(10.2) 

The function/3 = fl(t) is selected so as to satisfy the previously adopted connection (3.3) between the equilibrium state 

parameters @~., Po., and p~.: 

# = ~'p.((r - 1)p.) -~. (10.3) 

The possibility of  this selection of the function/9 is based on the following considerations. Let the form of the function/3 be 

fixed at infinity by means of (10.3). Since in accordance with the assumption made above the fluid at inf'mity has the density 

Pc, = const and is at rest, then the connection (10.3) will be valid not only for t = 0, but also for t > 0. If  we now continue 
the function/9 in a continuous fashion within the flow region, then we fred that (10.3) will be valid in the entire space, both 

for t = 0 and for any admissible t > 0. 
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The exact nonstationary solutions of the problem (10.1) are written in the form 

~o(x, 0 = ~| + ~,'(x, 0.  p(x,  0 = p .  + p'(x,  0 ,  

p(x, 0 = p| + p'(x, 0, r 0 = r  + ~,'(x, 0; (10.4) 

where the functions ~o', p ' ,  p ' ,  @' (10.4), examined as perturbations of the solutions (10.2), satisfy the relations 

ap'/at + div(p.V~' + p'V,p') = O, 

_ 7 +  7 = _~, ,  f %  n,' 
p .  + p '  C~ - 1) CO,, §  

A~ '  --_ 4~CO', p .  + p'  -- a(0| + p')r,  

Ixl--~*: I%r Ivc~'l,p', p'--0. 

(10.5) 

The initial values (10.1) take the form 

,'(x, 0) = ,'0(x), p'(x, 0) = p'0(x) (10.6) 

In the following the primes on the functions ~o', p ' ,  p ' ,  (I,' are dropped. The energy integral is valid for the solutions of the 

problem (10.5), (10.6). 

dE2/dt = 0, E 2 = K 2 + H a = const, 

2r  2 = f # ,  + p)(v~,)'ax. 

1"I2 = f {P(7 - l)  -t  + ( ( I )  + (~)p/2 lax. 

(10.7) 

11. P r o o f  o f  Instability. The Lyapunov functional is taken in the form 

W~ = f p~dx. (11.1) 

Differentiation of the functional W 1 (11.1) with respect to time with the aid of (10.5) and subsequent transformations with the 

use of (10.7) yield the relation 

d % / a t  = - 2 e ,  + a K  2 + X,  

{l (~_~x~) 2 2}'pa oa (2-},)a(p,+p) r op,,Iyco., +,o) r -  Dr] (},+2)qo~,p l (11.2) 
x = f zp"  + (y tI,,.CO. +,,,) + + - 

- (,-,)co +p) (y: b .=pij dx" 

We can show that for 1 < 3" <_ 2 the inequality holds 

X ' >  0. (11.3) 

In fact, if we set 3' = 2, then the functional X (11.3) takes the form 

4P~a 2aP~2 [dx (i 1.4) 
x = f I !p  + + [z -~ . , )  , , . co .+e)  p . .+e /  " 

By virtue of  (10.1) and (10.2) there follows immediately from the relation (11.4) the inequality (11.3). Now let 3' = i + (~, 

(~ > 0. In the limit as o~--, ao the functional 
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x = f  2p. + 
2Pd92 t2~2 i 

+ dx.  p.Go. + p) 

(11.5) 

From (11.5) with account for the relations (10.1), (10.2) there again follows the inequality (11.3). Finally, from (11.2), (11.3) 
there follows the estimate 

dWt/at > - 2 E  2 + 3K 2 > - 2 B  2 for 1 < y  ~< 2. (11.6) 

It is further assumed that the Lagrange theorem inversion condition is satisfied, i.e., the potential energy functional 

II  2 (10.7) on the examined states of rest (10.2) does not have a minimum. This means that among the arbitrarily small (and 
among the finite) disturbances there will be those for which 1-I 2 = II20 < 0. As the initial values for t = 0 we take the 

disturbance with K2(0) = 0, 1-I2(0) = II20. Then by virtue of (10.7) there holds the inequality E2(0) = II20 < 0. In this case 
there follows from the estimate (11.6) the inequality W 1 > 2 ] II20 [ t, which, with account for the definition of the functional 

W 1 (11.1) reduces to the form 

z = f lp 2 +  ,21 dx > 41rI lt. (11.7) 

If we use the integral I (11.7) as a measure of the deviation of the flow from the state of rest, then there is an instability of 

the following type: for any number e > 0 the inequality I < e is violated after a finite time, no matter how small the amplitude 

I(0) of the disturbances that are selected as the initial values. This instability is "stronger" than that understood in the 
conventional Lyapunov definition [1-3], where for the verification of instability the existence of at least one value of e is 

sufficient, and the violation of the condition I < E is examined over an infinke interval of time. We must emphasize that the 

estimate (11.7) is indicative of  an actual physical instability of the states of equilibrium (rest) (2.6), since the ambiguity in the 

selection of the velocity potential v~(x, t) is removed with the aid of  the connection (10.3). 
It is also important to note that the heuristic basis for selecting the Lyapunov functional W 1 (11.1) was the Hamiltonian 

formulation of the theorem on the instability of finite-dimensional mechanical systems [2] and the well-known technique of the 

introduction of the canonical variables in hydrodynamics [25, 26]. Moreover, in the linear approximation W 1 (11.1) coincides 

with the functional W from (6.2). Proof of this fact is obtained immediately after the application of the Gauss theorem [27]. 

The author wishes to thank V. A. Vladimirov for posing the problem and discussions. 
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